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Thin films often exhibit a spontaneous breaking of chiral symmetry. This symmetry breaking can occur on
two distinct length scales. On a microscopic scale, nonchiral molecules can pack in a chiral structure. On a
macroscopic scale, a striped texture can buckle to form a spiral. Using continuum elastic theory and Monte
Carlo simulations, we predict the defect textures that result from macroscopic chiral symmetry breaking and
contrast them with earlier predictions for microscopic symmetry breaking. We identify experiments in which

each type of symmetry breaking occurs.

PACS number(s): 61.30.Jf, 64.70.Md, 68.10.—m, 68.15.+¢

Thin films of organic molecules exhibit many types of
order and many types of modulated structures on different
length scales [1]. In addition to tilt order, bond-orientational
order, and crystalline order, several recent experiments have
found chiral order in thin films of nonchiral molecules.
Atomic force microscopy has explicitly shown local chiral
order in Langmuir-Blodgett films [2,3]. Optical microscopy
has shown chiral textures in liquid-crystal films [4,5] and
Langmuir monolayers [6—8], which indicate that the films
have spontaneously broken chiral symmetry. To describe
these textures, Selinger, Wang, Bruinsma, and Knobler
(SWBK) [9] proposed a general theory of chiral symmetry
breaking on a microscopic length scale. This theory is based
on a local chiral order parameter, which is coupled to bend
deformations in the molecular tilt orientation. The textures
predicted by this theory are consistent with experiments on
freely suspended films of smectic liquid crystals. However,
there are substantial inconsistencies between the predicted
textures and experiments on Langmuir monolayers. As dis-
cussed below, Langmuir monolayers exhibit a chiral symme-
try breaking that cannot be explained through this model of
local chiral order.

In this paper, we present an alternative model for chiral
symmetry breaking that can explain these experiments on
Langmuir monolayers. The essence of our model is that a
striped texture, which forms for reasons unrelated to chiral-
ity, can buckle in the presence of a point defect to form a
spiral. This buckling process breaks chiral symmetry on the
macroscopic (50 wm) length scale of the defect texture, but
not on the microscopic (5 A) length scale of the molecular
packing. Thus thin films can develop chiral order on either
length scale. Our distinction between microscopic and mac-
roscopic chiral symmetry breaking is similar to the distinc-
tion between spontaneous and induced chirality proposed by
Kaganer and Loginov [10], but we emphasize the length
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scale of chiral order. Our results show that a full description
of these films must include ordering over a wide range of
length scales.

To describe chiral symmetry breaking on a microscopic
length scale, SWBK developed a theory based on a local
chiral order parameter (r), which gives the magnitude and
sign of chiral symmetry breaking. For example, if chiral
symmetry is broken by the phase separation of a racemic
mixture, Y(r) = pp(r)— p,(r) is the difference in densities of
the right- and left-handed enantiomers. This chiral order pa-
rameter is coupled to variations in the direction of molecular
tilt. A general free energy can be written as

F= f A 1e(V )2+ 3t + tu g+ 1K (V- ¢)?
+3K5(Ve)2—Nyz-V X c]. 1)

Here, c(r) gives the direction of molecular tilt, projected into
the layer plane. In this model, the tilt magnitude |c| is as-
sumed to be constant. The first three terms are the Ginzburg-
Landau expansion in powers of ¢. The next two terms are
the Frank free energy for splay and bend of c. The final term
is the coupling between ¢ and c. It is permitted by symmetry
because both ¢ and z-V Xc¢ change sign under reflection.
Using mean-field theory, SWBK derived the phase diagram
for this model. The phase diagram shows a uniform non-
chiral phase for high temperature ¢ and a uniform chiral
phase for low ¢. For intermediate ¢, there are two modulated
phases: a striped phase and a square lattice. In the striped
phase, there are alternating stripes of positive and negative
chirality. In each stripe of positive chirality, ¢ bends counter-
clockwise, and in each stripe of negative chirality, ¢ bends
clockwise. In the square-lattice phase, there are alternating
cells of positive and negative chirality, which give alternat-
ing vortices and antivortices in c.

This theory of chiral symmetry breaking on a microscopic
length scale is at least qualitatively consistent with experi-
ments on freely suspended liquid-crystal films by Pang and
Clark [5]. These experiments show a transition from a uni-
form nonchiral phase to a striped phase, characterized by a
spontaneous bend in ¢. The sign of the bend alternates be-
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tween clockwise and counterclockwise in successive stripes.
The stripe width diverges at the phase transition, in agree-
ment with the theoretical prediction of critical behavior. By
contrast, there are significant inconsistencies between the
textures predicted by this theory and experiments on Lang-
muir monolayers of fatty acids. Recent experiments [7,8]
have shown that the director modulation in these monolayers
is splay rather than bend. Moreover, neighboring stripes are
identical; there is no alternation between successive stripes.
Nevertheless, these Langmuir monolayers do exhibit chiral
symmetry breaking, as seen in their spiral textures. Thus
these systems must exhibit a different type of chiral symme-
try breaking, which cannot be described by a local chiral
order parameter.

To explain these experiments on Langmuir monolayers,
we propose a model for chiral symmetry breaking on a mac-
roscopic length scale. This model is based on an alternative
mechanism for striped textures in monolayers. Several inves-
tigators have shown that stripes can be induced by the asym-
metry between molecular heads and tails in monolayers,
even without any chirality. This effect was studied in the
context of liquid-crystal surfaces by Meyer and Pershan [11].
For Langmuir monolayers, this effect has been studied in a
molecular model by Safran et al. [12], and in a continuum
model by Hinshaw et al. [13] and Jacobs et al. [14]. In the
molecular point of view, the molecular heads and tails take
up different amounts of area, and hence the most efficient
packing leads to a splay between the orientations of neigh-
boring molecules. In the continuum perspective, the head-tail
asymmetry permits terms of the form V- ¢ or |¢|?V - ¢ in the
free energy. Because V -c is a total divergence, its integral
can be reduced to a surface integral, which depends only on
boundary conditions. However, |c|2V - ¢ is not a total diver-
gence if |¢| is not constant. The free energy can be therefore
written as

F=J d’r[ — 3alc|?+ ib|c|*+ 1K, (V - ¢)?
+3K5(V X €)%= Ng|c|?V - c]. )

In this expression, the first two terms favor the tilt magnitude
|e|=(a/b)"2. The next two terms give the Frank free energy
penalty for splay and bend of ¢, as in Eq. (1). The final term,
permitted by the head-tail asymmetry, favors a splay of c.
The coefficient A g is a measure of this asymmetry. The com-
petition between the A g and K; terms determines the optimal
splay.

The mean-field phase diagram for this model has been
investigated in Refs. [13,14]. As A increases, there is a tran-
sition from a uniform phase to a striped phase, shown sche-
matically in Fig. 1(a). Within each stripe, there is a splay in
c. Between successive stripes, there is a sharp domain wall
in which the magnitude of ¢ is reduced while the direction of
¢ rotates back. All of the stripes are identical; there is no
alternation between successive stripes. The domain-wall
width can be estimated as £~ (K /a)"?, while the domain-
wall energy per unit length is E .~ (a?/b)(K;/a)?. The
stripe width is then

w= Kl/()\S—Ewall)- (3)
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FIG. 1. Schematic views of (a) the striped phase, (b) a vortex
defect with a dense branching morphology, and (c) a spiral defect.
The arrows show ¢, the direction of molecular tilt projected into the
layer plane. Note that the spiral defect breaks chiral symmetry,
while the striped phase and the dense branching morphology do not.

Recent experiments have shown that the striped textures ob-
served in Langmuir monolayers are indeed consistent with
the splay stripes predicted by this model [8]. The typical
stripe width is w=~50 pum.

The striped phase of Refs. [13,14] is the ground state of
this model, and it is not chiral. In this paper, we point out
that chiral symmetry can be spontaneously broken in the
defects of the striped phase. Suppose there is a point vortex
in ¢. A point vortex could arise from (a) a localized impurity,
(b) the kinetics of formation of the monolayer, (c) boundary
conditions on a circular droplet, or (d) thermal fluctuations
that nucleate a vortex-antivortex pair. Near the vortex core,
there is more than the optimal splay. Away from the vortex
core, the splay V - ¢ decreases as 1/r, where r is the distance
from the core. As a result, the defect generates domain walls,
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analogous to the walls in the periodic striped pattern, and
thereby increases the splay up to the optimal value. Farther
from the vortex core, the splay continues to decrease, or
equivalently, the distance between the domain walls in-
creases linearly with . To maintain the optimal splay, the
system may do either of two things. First, the defect may
continue to generate more domain walls in a dense branching
morphology, as shown in Fig. 1(b). Second, the pattern of
domain walls may buckle to form a spiral, which maintains a
constant spacing between walls, as in Fig. 1(c). If it forms a
spiral, the handedness of the spiral is random. Equal numbers
of right- and left-handed spirals should be formed, with the
same free energy. Thus the formation of spiral defects leads
to chiral symmetry breaking on the macroscopic length scale
w of the splay stripes, even without any microscopic chiral
order.

To determine whether the dense branching morphology or
the spiral is the lower-energy defect, we estimate the energy
of each texture. For the dense branching morphology, the
main energy cost (compared to the periodic striped state) is
the energy E 44 of each point dislocation where a domain
walls begins. At the radius r from the defect core, the num-
ber of domain walls scales as r/w. Hence, in the annulus
from r to r+dr, the number of dislocations scales as dr/w,
and the dislocation density scales as 1/rw. The energy of the
dense branching morphology (DBM) therefore scales as

R . .
EDBM“J rdr S Zaa 5 4)
a

rw w

where R is the system size and a the dislocation core radius.
By contrast, the main energy cost of the spiral (compared to
the periodic striped state) is the domain-wall curvature en-
ergy. Because the domain-wall curvature scales as 1/r, the
energy of the spiral scales as

R K R
Espiralw . rdr r_z ~ kln ; 5 (5)

where « is the domain-wall curvature rigidity. For large R,
E piral grows less rapidly than Eppy. Thus the spiral is the
lower-energy vortex defect.

Three other features of our model should be pointed out.
First, the energy of a spiral defect depends only weakly on
the number of spiral arms. The same stripe width can be
achieved by spirals with fewer arms wound more tightly or
more arms wound less tightly. Away from the vortex core,
these configurations have the same energy density. The only
small differences in energy are due to the structure close to
the vortex core, which cannot be estimated well using con-
tinuum elastic theory. Thus spirals with different numbers of
arms may coexist in the same monolayer. In experiments,
spirals with 1 to 10 arms have been observed [7]. Second, a
system of concentric circular stripes is a degenerate case of
the spiral defect. The energy of a concentric defect is the
same as a spiral, except for a small difference due to the core
structure. Concentric defects have not been seen in experi-
ments. Third, if a monolayer is compressed or dilated, all of
the parameters in the free energy (2) change continuously,
and hence the stripe width w changes continuously. In re-
sponse to this change in w, all the spirals in the monolayer
will become tighter or looser by winding or unwinding. To
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FIG. 2. Monte Carlo simulations of (a) the striped phase, (b) a
vortex defect with a dense branching morphology, and (c) a spiral
defect. The gray scale shows the y component of ¢. Simulation (a)
was done on a hexagonal lattice of 100X 110 sites with periodic
boundary conditions; (b) and (c) were done on a hexagonal lattice
with a circular geometry with a radius of 85 sites.



51 THEORY OF CHIRAL DEFECTS IN LANGMUIR MONOLAYERS

change the spacing between arms, right- and left-handed spi-
rals will rotate in opposite directions. This rotation has been
observed experimentally [7].

As an explicit test of this analysis, we have performed
Monte Carlo simulations of this model of Langmuir mono-
layers. In these simulations, we discretize the monolayer on a
hexagonal lattice, with a director ¢; defined on each site i.
We make the approximation K;=K;=K. The discretized
free energy then becomes

F= E [%K(cj—ci)z‘ %)\Sf'ij'(cj_ci)(lciﬁ—'- |cj‘2)]
(i,5)
+ 2 [~ sale*+ bleil*]. (©6)

In the simulations, we require |¢]=<1. This constraint is
physically reasonable because c; is the projection of a three-
dimensional molecular director into the monolayer plane.
Without this constraint, the free energy gives unphysical re-
sults: near a vortex, where V -c¢ diverges, |¢| becomes arbi-
trarily large and the vortex free energy becomes arbitrarily
large and negative. (This problem was not considered in
Refs. [13,14], because those papers did not investigate vor-
tices.) In the simulations presented here, we use
K=A=a=1 and b=2. We begin the simulations with either
a uniform director field or a single vortex. The temperature is
initially set to 0.1, low enough that the system does not com-
pletely disorder but high enough that the system can relax to
a lower-energy state. The temperature is slowly reduced to
0.001 or lower, in order to determine the ground state and
low-lying defect states.

The simulation results are shown in Figs. 2(a)-2(c). In
these figures, the gray scale indicates the y component of
¢, with white representing positive values and black nega-
tive. This method of visualization is chosen because the gray
scale approximately corresponds to the experimental fluores-
cence intensity in Refs. [6-8]. In Fig. 2(a), the simulation is
done in a system with periodic boundary conditions. Initially,
all the tilts are aligned along the x direction with magnitude
1/\/—2-. The system relaxes to the state of splay stripes, as
expected from Refs. [13,14], with an energy per site of
—0.1287. In Fig. 2(b), the simulation is done in a circular
geometry, with boundary conditions favoring radial align-
ment of the tilts. Initially, all the tilts are aligned in the radial
direction, with a vortex at the origin. This system relaxes to
the dense branching morphology predicted in Fig. 1(b), with
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an energy per site of —0.1143. In Fig. 2(c), the simulation is
again done in a circular geometry, but here the boundary
conditions favor tangential alignment of the tilts, and all the
tilts are initially aligned in the tangential direction. This sys-
tem relaxes to the spiral state predicted in Fig. 1(c). The
energy per site is —0.1258, lower than the dense branching
morphology. This result confirms that the spiral is the lower-
energy form of the vortex defect, and the dense branching
morphology is only a metastable form. In these simulations,
the striped texture and the spiral have some dislocations,
which are not observed in experiments. Apparently these dis-
locations anneal away on experimental time scales, but do
not have time to anneal away in the simulations.

The spiral defects discussed here are related to chiral de-
fects that have been seen in liquid-crystal films. Dierker, Pin-
dak, and Meyer [15] have observed analogous spiral defects
in freely suspended smectic films of chiral liquid crystals.
However, the spirals in those systems involve bend rather
than splay of the director. That bend is induced by molecular
chirality rather than by chiral symmetry breaking. Lavren-
tovich and Pergamenshchik [16] have observed spontaneous
twist deformations in thick nematic films of nonchiral liquid
crystals on liquid surfaces. The mechanisms that drive these
spontaneous twist deformations are different from the
mechanism for spiral formation discussed in this paper.
However, these spontaneous twist deformations are also ex-
amples of chiral symmetry breaking on the macroscopic
length scale of director modulations.

In conclusion, we have shown that chiral symmetry
breaking can occur on two distinct length scales. On the
microscopic length scale of molecular packing, nonchiral
molecules can pack in a chiral structure, leading to the chiral
textures predicted by SWBK. By contrast, on the much
longer length scale of director modulations, a nonchiral pat-
tern of splay stripes can buckle to form a spiral. Both types
of chiral symmetry breaking have now been observed—
microscopic chiral symmetry breaking in freely suspended
smectic films and macroscopic chiral symmetry breaking in
Langmuir monolayers. Thus, to understand the textures ob-
served in these films, one must consider order on a wide
range of length scales.
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FIG. 2. Monte Carlo simulations of (a) the striped phase, (b) a
vortex defect with a dense branching morphology, and (c) a spiral
defect. The gray scale shows the y component of ¢. Simulation (a)
was done on a hexagonal lattice of 100X 110 sites with periodic
boundary conditions; (b) and (c) were done on a hexagonal lattice
with a circular geometry with a radius of 85 sites.



